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More details about each model in the paper.
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tences and ‘A’ is for active. Repetition is the number
of times the human subject saw a sentence. For our
experiments, we average MEG data corresponding
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to multiple repetitions of a single sentence. 800 “Emm E’mﬂ % : 60
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We created a new Simple Sentence Corpus (SSC), Human Subiects
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