



#### CONTRIBUTIONS

Our main contributions are:

- We initiate a study to relate representations of simple sentences learned by various deep networks with those encoded in the brain. We establish correspondences between activations in deep network layers with brain areas.
- 2. We demonstrate that deep networks are capable of predicting change in brain activity due to differences in previously processed words in the sentence.
- 3. We demonstrate effectiveness of using deep networks to synthesize brain data for downstream data augmentation.

# MEG DATASET

| Dataset  | #Sentences | Voice | Repetition |
|----------|------------|-------|------------|
| PassAct1 | 32         | P+A   | 10         |
| PassAct2 | 32         | P+A   | 10         |
| Act3     | 120        | А     | 10         |

MEG datasets used in this paper. Column 'Voice' refers to the sentence voice, 'P' is for passive sentences and 'A' is for active. Repetition is the number of times the human subject saw a sentence. For our experiments, we average MEG data corresponding to multiple repetitions of a single sentence.

#### SIMPLE SENTENCE CORPUS

We created a new Simple Sentence Corpus (SSC), consisting of a mix of simple active and passive sentences of the form "the woman encouraged the girl" and "the woman was encouraged by the boy", respectively, for training custom DNNs. The SSC dataset consists of 256,145 sentences constructed using the following two sets.

| Source       | #Sentences  | Voice |
|--------------|-------------|-------|
| Wikipedia    | $125,\!900$ | P+A   |
| NELL Triples | $130,\!245$ | P+A   |

## ACKNOWLEDGEMENT

This work was supported by The Government of India (MHRD) scholarship and BrainHub CMU-IISc Fellowship awarded to Sharmistha Jat.

# **Relating Simple Sentence Representations in Deep Neural Networks and the Brain**

Sharmistha Jat, Hao Tang, Partha Talukdar, Tom Mitchell Association for Computational Linguistics (ACL) 2019 {sharmisthaj,ppt}@iisc.ac.in,htang1@alumni.cmu.edu, tom.mitchell@cs.cmu.edu

### MACRO-CONTEXT TESTS



#### MICRO-CONTEXT TESTS



#### MACRO-CONTEXT RESULTS



#### MICRO-CONTEXT RESULTS

#### 1. **Noun**:

"The dog ate **the**" (accuracy = 0.91)

#### 2. Verb:

"The dog <u>saw</u> the" vs. "The dog <u>ate</u> the";

## 3. Adjective:

"The happy child" vs. "The child";

We observe that middle layers of most models (BERT, Multitask) retain the adjective information well First Determiner:

#### "<u>A</u> dog" The shallow layers retain determiner information better than the deeper layers. BERT layer 3 (accuracy = 0.82), Multitask lstm 0\_backward (accuracy = 0.82), BERT Layer 18/19 (accuracy 0.78)



#### SENTENCE REPRESENTATION: