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INTRODUCTION
• Our results in the figure below show that the decoding accuracy for 

both GloVe and Word2vec stimulus representations improves when 
DTW distance is used as compared to Euclidean distance.  

• This improvement in accuracy is encouraging in probing the time 
series shift within a single subject response.  
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• Our analysis shows that DTW very significantly outperforms Euclidean 
distance in classification tasks that require comparing predicted to 
observed MEG neural activity.  

• DTW stretches and shifts data from the sensors and constraining the 
time warping path.  

• Based on this analysis we recommend consideration of using DTW 
over Euclidean distance in a wide range of classification and 
prediction problems involving neuroimaging. 
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Datasets: Two data sets, D1 (n= 4 subjects) and D2 (n = 9) [4]. 

Experiment:  Noun stimuli decoding from vector (GloVe and Word2vec) 
representations using linear ridge regression [5]. Distance were 
calculated after z-scoring both the predicted and observed time series 
data.  

DTW distance: Compute the DTW distance with constrained window to 
a fixed +/-5 millisecond in time series. 

Accuracy: 5 fold cross validation was used.

• Machine learning models are used to predict brain activity from stimulus 
features for discovering how neural signals encode information[1][2]. 
Testing of these models is critically dependent on the choice of metric 
to compare predicted time series and the observed data.  

• Using Euclidean distance to measure how well the predicted activity 
matches the observed data is unrealistic given the natural variance in 
timing across a single subject’s response to the same stimulus. 

• Dynamic time warping (DTW) method does not assume perfect 
alignment between the predicted and observed activity and can adjust 
for small shifts and stretches in time between two time series [3]. 

• Our work uses DTW method to compare two time series, neural activity 
recorded using magnetoencephalography (MEG) and predicted activity 
from our trained models. We evaluate the performance of our DTW 
approach with the standard Euclidean metric.

Sample Stimuli: 
    “the woman was encouraged by the boy” 

“the girl encouraged the woman” 
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Ridge Regression Model:

Distance Measures:

Accuracy Measure:

Figure 1. Method Schematic for the experiment to decode noun stimulus in brain activity using 
GloVe embedding features for a word. The MEG signal is preprocessed using temporal signal 
space separation (tSSS), low-pass filtered to 150Hz with notch filters at 60 and 120Hz, and 
down-sampled to 500Hz. (A) Sample sentences from the experiment. (B) Regression from word 
features to predicted brain activity. (C) Distance measure formulae for input x,y. (D) 
Accuracy computation for a word pair (x1,y1), T1 = distance(x1 , y1), W1 = distance(x2, y1).

Figure 3. Mapping of points between predicted and true brain activity over time for Euclidean 
and DTW distance measures. A single sensor for the noun “boy”, sampled for 100ms. (A) & (B) 
show the sensor data from subject ‘A’, while (C) shows the data from subject ‘B’. Bottom row 
depicts the path between time points used to calculate each distance measure (red line).
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Figure 2. Plot shows accuracy of noun decoding experiment using multiple distance measure, 
we use GloVe [6] and Word2Vec  features to decode the stimulus, from the plot we observe 
that the DTW warping distance gives significant decoding accuracy. 
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